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11. Rectangle of greatest area in an ellipse Use the method of
Lagrange multipliers to find the dimensions of the rectangle of
greatest area that can be inscribed in the ellipse x*/16 + y?/9 =1
with sides parallel to the coordinate axes.
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43. Extrema on a circle of intersection Find the extreme values of

the function f(x, y,z) = xy + z* on the circle in which the plane
y = x = 0 intersects the sphere x> + y? + 72 = 4,
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45. The condition Vf = AVg is not sufficient Although
Vf = AVg is a necessary condition for the occurrence of an
extreme value of f(x, y) subject to the conditions g(x, y) = 0 and
Vg # 0, it does not in itself guarantee that one exists. As a case
in point, try using the method of Lagrange multipliers to find a
maximum value of f(x,y) = x + y subject to the constraint that
xy = 16. The method will identify the two points (4, 4) and
(—4, —4) as candidates for the location of extreme values. Yet the
sum (x + y) has no maximum value on the hyperbola xy = 16.
The farther you go from the origin on this hyperbola in the first
quadrant, the larger the sum f(x, y) = x + y becomes.
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47. a. Maximum on a sphere Show that the maximum value of

a*b*c? on a sphere of radius r centered at the origin of a Car-
tesian abc-coordinate system is (72/3 ).

b. Geometric and arithmetic means Using part (a), show
that for nonnegative numbers a, b, and c,

a+ b+ c
3

9

(abc)'? =

that is, the geometric mean of three nonnegative numbers is less
than or equal to their arithmetic mean.
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Chapter 14: Partial Derivatives

or

2x =2\ + pu,

The scalar equations in Equations (5) yield

2y =2\y + u, 27 = W. 5)
2x = 2Ax + 2z=>(1 — A)x = z, 6
2y =20y + 2z=>(1 — M)y = z. ©

Equations (6) are satisfied simultaneously if either A = 1 and z =0 or A # 1 and

x=y=2z/(1 = \.

If z = 0, then solving Equations (3) and (4) simultaneously to find the corresponding
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you

look at Figure 14.59.

If x = y, then Equations (3) and (4) give

X+ xr-1

2wt =1 z=1—2x

V) i ne (2

Il
o

x+x+z—-1=0

V2.

-1 7

5 2,1+\6>.

Here we need to be careful, however. Although P, and P, both give local maxima of f on
the ellipse, P, is farther from the origin than P;.

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on
the ellipse farthest from the origin is P,. (See Figure 14.59.) |

Exercises m

Two Independent Variables with One Constraint

1.

Extrema on an ellipse Find the points on the ellipse
x> + 2y* = 1 where f(x, y) = xy has its extreme values.

. Extrema on a circle Find the extreme values of f(x,y) = xy

subject to the constraint g(x, y) = x> + y> — 10 = 0.

. Maximumon aline Find the maximum value of f(x, y) = 49 —

x> — y? on the line x + 3y = 10.

. Extremaonaline Find the local extreme values of f(x, y) = x2y

on the line x + y = 3.

. Constrained minimum Find the points on the curve xy*> = 54

nearest the origin.

. Constrained minimum Find the points on the curve x?y = 2

nearest the origin.

. Use the method of Lagrange multipliers to find

a. Minimum on a hyperbola The minimum value of x + y,
subject to the constraints xy = 16,x > 0,y > 0

b. Maximum on a line The maximum value of xy, subject to
the constraint x + y = 16.

Comment on the geometry of each solution.

. Extrema on a curve Find the points on the curve x> + xy +

y?> = 1 in the xy-plane that are nearest to and farthest from the
origin.

. Minimum surface area with fixed volume Find the dimen-

sions of the closed right circular cylindrical can of smallest
surface area whose volume is 167 cm?.

10.

11.

12.

13.

14.

15.

16.

Cylinder in a sphere Find the radius and height of the open
right circular cylinder of largest surface area that can be inscribed
in a sphere of radius a. What is the largest surface area?

Rectangle of greatest area in an ellipse Use the method of
Lagrange multipliers to find the dimensions of the rectangle of
greatest area that can be inscribed in the ellipse x*/16 + y%/9 = 1
with sides parallel to the coordinate axes.

Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in
the ellipse x*/a> + y*/b> = 1 with sides parallel to the coordi-
nate axes. What is the largest perimeter?

Extrema on a circle Find the maximum and minimum values
of x> + y? subject to the constraint x> — 2x + y> — 4y = 0.

Extrema on a circle Find the maximum and minimum values
of 3x — y + 6 subject to the constraint x> + y> = 4.

Ant on a metal plate The temperature at a point (x, y) on a
metal plate is T(x,y) = 4x> — 4xy + y>. An ant on the plate
walks around the circle of radius 5 centered at the origin. What
are the highest and lowest temperatures encountered by the ant?

Cheapest storage tank Your firm has been asked to design a
storage tank for liquid petroleum gas. The customer’s specifica-
tions call for a cylindrical tank with hemispherical ends, and the
tank is to hold 8000 m? of gas. The customer also wants to use
the smallest amount of material possible in building the tank.
What radius and height do you recommend for the cylindrical
portion of the tank?



Three Independent Variables with One Constraint

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Minimum distance to a point Find the point on the plane
x + 2y + 3z = 13 closest to the point (1, 1, 1).

Maximum distance to a point Find the point on the sphere
x> + y> + 72 = 4 farthest from the point (1,—1, 1).

Minimum distance to the origin Find the minimum distance
from the surface x> — y> — z> = 1 to the origin.

Minimum distance to the origin Find the point on the surface
z = xy + 1 nearest the origin.

Minimum distance to the origin Find the points on the surface
72 = xy + 4 closest to the origin.

Minimum distance to the origin Find the point(s) on the sur-
face xyz = 1 closest to the origin.

Extrema on a sphere Find the maximum and minimum values of
feny,2) =x =2y + 52

on the sphere x> + y> + 72 = 30.

Extrema on a sphere Find the points on the sphere

x> + y> + 72 = 25 where f(x,y,z) = x + 2y + 3z has its max-

imum and minimum values.

Minimizing a sum of squares Find three real numbers whose

sum is 9 and the sum of whose squares is as small as possible.

Maximizing a product Find the largest product the positive
numbers x, y, and z can have if x + y + z> = 16.

Rectangular box of largest volume in a sphere Find the dimen-
sions of the closed rectangular box with maximum volume that can
be inscribed in the unit sphere.

Box with vertex on a plane Find the volume of the largest
closed rectangular box in the first octant having three faces in the
coordinate planes and a vertex onthe plane x/a + y/b + z/c = 1,
where a > 0,b > 0, and ¢ > 0.

Hottest point on a space probe A space probe in the shape of
the ellipsoid

4> +y2 + 472 =16

enters Earth’s atmosphere and its surface begins to heat. After
1 hour, the temperature at the point (x, y, z) on the probe’s sur-
face is

T(x,y,z) = 8x* + 4yz — 16z + 600.

Find the hottest point on the probe’s surface.

Extreme temperatures on a sphere Suppose that the Celsius
temperature at the point (x, y, z) on the sphere x> + y*> + 72 = 1
is T = 400xyz>. Locate the highest and lowest temperatures on
the sphere.

Cobb-Douglas production function During the 1920s, Charles
Cobb and Paul Douglas modeled total production output P (of a
firm, industry, or entire economy) as a function of labor hours
involved x and capital invested y (which includes the monetary
worth of all buildings and equipment). The Cobb-Douglas produc-
tion function is given by

P(x,y) = kx®y'™e,

where k and « are constants representative of a particular firm or
economy.

32.

33.

34.

35.

36.

14.8 Lagrange Multipliers 865

a. Show that a doubling of both labor and capital results in a
doubling of production P.

b. Suppose a particular firm has the production function for k =
120 and o = 3 /4. Assume that each unit of labor costs $250
and each unit of capital costs $400, and that the total expenses
for all costs cannot exceed $100,000. Find the maximum pro-
duction level for the firm.

(Continuation of Exercise 31.) If the cost of a unit of labor is ¢,
and the cost of a unit of capital is ¢,, and if the firm can spend
only B dollars as its total budget, then production P is constrained
by ¢;x + ¢,y = B. Show that the maximum production level
subject to the constraint occurs at the point
_ aB (- B
X = ? and = T
Maximizing a utility function: an example from economics
In economics, the usefulness or utility of amounts x and y of two
capital goods G, and G, is sometimes measured by a function
U(x, y). For example, G, and G, might be two chemicals a phar-
maceutical company needs to have on hand and U(x, y) the gain
from manufacturing a product whose synthesis requires different
amounts of the chemicals depending on the process used. If G,
costs a dollars per kilogram, G, costs b dollars per kilogram, and
the total amount allocated for the purchase of G| and G, together
is ¢ dollars, then the company’s managers want to maximize U(x, y)
given that ax + by = c¢. Thus, they need to solve a typical
Lagrange multiplier problem.
Suppose that

Ux,y) = xy + 2x
and that the equation ax + by = ¢ simplifies to

2x + y = 30.

Find the maximum value of U and the corresponding values of x
and y subject to this latter constraint.

Blood types Human blood types are classified by three gene
forms A, B, and O. Blood types AA, BB, and OO are homozygous,
and blood types AB, AO, and BO are heterozygous. If p, q, and r
represent the proportions of the three gene forms to the popula-
tion, respectively, then the Hardy-Weinberg Law asserts that the
proportion Q of heterozygous persons in any specific population
is modeled by

Op, g, 1) = 2pq + pr + qr),
subjectto p + ¢ + r = 1. Find the maximum value of Q.

Length of a beam In Section 4.6, Exercise 39, we posed a
problem of finding the length L of the shortest beam that can
reach over a wall of height £ to a tall building located & units from
the wall. Use Lagrange multipliers to show that

L= (3 + i23)",

Locating a radio telescope You are in charge of erecting a radio
telescope on a newly discovered planet. To minimize interference,
you want to place it where the magnetic field of the planet is weak-
est. The planet is spherical, with a radius of 6 units. Based on a
coordinate system whose origin is at the center of the planet, the
strength of the magnetic field is given by M(x,y,z) = 6x—
y?> + xz + 60. Where should you locate the radio telescope?
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Extreme Values Subject to Two Constraints

37.

38.

39.

40.

41.

42.

43.

44.

Maximize the function f(x,y,z) = x> + 2y — z* subject to the
constraints 2x —y = O0and y + z = 0.

Minimize the function f(x,y,z) = x*> + y*> + z2 subject to the
constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.

Minimum distance to the origin Find the point closest to the
origin on the line of intersection of the planes y + 2z = 12 and
x+y=6.

Maximum value on line of intersection Find the maximum
value that f(x, y, z) = x> + 2y — z> can have on the line of inter-
section of the planes 2x — y = Oand y + z = 0.

Extrema on a curve of intersection Find the extreme values of
f(x,v,2) = x>yz + 1 on the intersection of the plane z = 1 with
the sphere x> + y? + 2% = 10.

a. Maximum on line of intersection Find the maximum value
of w = xyz on the line of intersection of the two planes
x+y+z=40andx +y—z=0.

b. Give a geometric argument to support your claim that you
have found a maximum, and not a minimum, value of w.

Extrema on a circle of intersection Find the extreme values of
the function f(x,y, z) = xy + z2 on the circle in which the plane
y — x = 0 intersects the sphere x> + y> + 7> = 4.

Minimum distance to the origin Find the point closest to the

origin on the curve of intersection of the plane 2y + 4z = 5 and
the cone 7% = 4x? + 4y%

Theory and Examples

45.

46.

The condition Vf = AVg is not sufficient Although
Vf = AVg is a necessary condition for the occurrence of an
extreme value of f(x, y) subject to the conditions g(x, y) = 0 and
Vg # 0, it does not in itself guarantee that one exists. As a case
in point, try using the method of Lagrange multipliers to find a
maximum value of f(x,y) = x + y subject to the constraint that
xy = 16. The method will identify the two points (4, 4) and
(—4, —4) as candidates for the location of extreme values. Yet the
sum (x + y) has no maximum value on the hyperbola xy = 16.
The farther you go from the origin on this hyperbola in the first
quadrant, the larger the sum f(x, y) = x + y becomes.

A least squares plane The plane z = Ax + By + C is to be
“fitted” to the following points (xy, yx, 2x):

0,0,0), O, 1, 1), (1,1, 1), (1,0,—1).

1 49 Taylor’s Formula for Two Variables

Find the values of A, B, and C that minimize
4

> (Ax + By + C = )7,
k=1

the sum of the squares of the deviations.
47. a. Maximum on a sphere Show that the maximum value of
a’b*c? on a sphere of radius r centered at the origin of a Car-
tesian abc-coordinate system is (72/3)3.
b. Geometric and arithmetic means Using part (a), show
that for nonnegative numbers a, b, and c,
a+b+c.
3
that is, the geometric mean of three nonnegative numbers is less
than or equal to their arithmetic mean.

(abe)'? =

48. Sum of products Let a, a,, . . ., a, be n positive numbers. Find
the maximum of 3/, a,x; subject to the constraint 3, x;> = 1.

COMPUTER EXPLORATIONS
In Exercises 4954, use a CAS to perform the following steps implement-
ing the method of Lagrange multipliers for finding constrained extrema:

a. Form the function 2 = f — A;g; — A,g,, where f is the func-
tion to optimize subject to the constraints g; = 0 and g, = 0.

b. Determine all the first partial derivatives of 4, including the par-
tials with respect to A; and A,, and set them equal to 0.

c. Solve the system of equations found in part (b) for all the
unknowns, including A, and A,.

d. Evaluate f at each of the solution points found in part (c) and select
the extreme value subject to the constraints asked for in the exercise.

49. Minimize f(x, y, z) = xy + yz subject to the constraints x> + y*> —

=0and x>+ 2 —2=0.

50. Minimize f(x,y,z) = xyz subject to the constraints x> + y*>—

=0andx —z=0.

51. Maximize f(x,y,z) = x> + y> 4+ z> subject to the constraints
2y + 4z —5=0and 4x?> + 49> — 2 = 0.

52. Minimize f(x,y,z) = x> + y*> + 7> subject to the constraints
X—xy+y —22—-1=0andx>+y?—1=0.

53. Minimize f(x,y,z, w) = x> + y*> + 7> + w? subject to the con-
straints 2x—y+z—w—-1=0 and x+y—z+
w—1=0.

54. Determine the distance from the line y = x + 1 to the parabola
y> = x. (Hint: Let (x, y) be a point on the line and (w, z) a point
on the parabola. You want to minimize (x — w)> + (y — 2)%.)

In this section we use Taylor’s formula to derive the Second Derivative Test for local
extreme values (Section 14.7) and the error formula for linearizations of functions of two
independent variables (Section 14.6). The use of Taylor’s formula in these derivations
leads to an extension of the formula that provides polynomial approximations of all orders
for functions of two independent variables.

Derivation of the Second Derivative Test

Let f(x, y) have continuous partial derivatives in an open region R containing a point P(a, b)
where f, = f, = 0 (Figure 14.60). Let /& and k be increments small enough to put the
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